• Layer-normalization layer (Ba et al., 2016).

    Normalizes the activations of the previous layer for each given example in a batch independently, instead of across a batch like in batchNormalization. In other words, this layer applies a transformation that maintains the mean activation within each example close to 0 and activation variance close to 1.

    Input shape: Arbitrary. Use the argument inputShape when using this layer as the first layer in a model.

    Output shape: Same as input.

    References:

    Parameters

    • Optional args: LayerNormalizationLayerArgs

    Returns LayerNormalization

    Doc

Generated using TypeDoc