• Computes depthwise 2D convolution, optionally fused with adding a bias and applying an activation.

    Given a 4D input array and a filter array of shape [filterHeight, filterWidth, inChannels, channelMultiplier] containing inChannels convolutional filters of depth 1, this op applies a different filter to each input channel (expanding from 1 channel to channelMultiplier channels for each), then concatenates the results together. The output has inChannels * channelMultiplier channels.

    See https://www.tensorflow.org/api_docs/python/tf/nn/depthwise_conv2d for more details.

    Type Parameters

    Parameters

    • __namedParameters: {
          activation?: Activation;
          bias?: Tensor<Rank> | TensorLike;
          dataFormat?: "NHWC" | "NCHW";
          dilations?: number | [number, number];
          dimRoundingMode?: "floor" | "round" | "ceil";
          filter: TensorLike | Tensor4D;
          leakyreluAlpha?: number;
          pad: number | "same" | "valid";
          preluActivationWeights?: Tensor<Rank>;
          strides: number | [number, number];
          x: TensorLike | T;
      }
      • Optional activation?: Activation
      • Optional bias?: Tensor<Rank> | TensorLike
      • Optional dataFormat?: "NHWC" | "NCHW"
      • Optional dilations?: number | [number, number]
      • Optional dimRoundingMode?: "floor" | "round" | "ceil"
      • filter: TensorLike | Tensor4D
      • Optional leakyreluAlpha?: number
      • pad: number | "same" | "valid"
      • Optional preluActivationWeights?: Tensor<Rank>
      • strides: number | [number, number]
      • x: TensorLike | T

    Returns T

Generated using TypeDoc