Used to instantiate an input to a model as a tf.SymbolicTensor.
tf.SymbolicTensor
Users should call the input factory function for consistency with other generator functions.
input
Example:
// Defines a simple logistic regression model with 32 dimensional input// and 3 dimensional output.const x = tf.input({shape: [32]});const y = tf.layers.dense({units: 3, activation: 'softmax'}).apply(x);const model = tf.model({inputs: x, outputs: y});model.predict(tf.ones([2, 32])).print(); Copy
// Defines a simple logistic regression model with 32 dimensional input// and 3 dimensional output.const x = tf.input({shape: [32]});const y = tf.layers.dense({units: 3, activation: 'softmax'}).apply(x);const model = tf.model({inputs: x, outputs: y});model.predict(tf.ones([2, 32])).print();
Note: input is only necessary when using model. When using sequential, specify inputShape for the first layer or use inputLayer as the first layer.
model
sequential
inputShape
inputLayer
Generated using TypeDoc
Used to instantiate an input to a model as a
tf.SymbolicTensor.Users should call the
inputfactory function for consistency with other generator functions.Example:
Note:
inputis only necessary when usingmodel. When usingsequential, specifyinputShapefor the first layer or useinputLayeras the first layer.