• Converts a sparse representation into a dense tensor.

    Builds an array dense with shape outputShape such that:

    // If sparseIndices is scalar dense[i] = (i == sparseIndices ? sparseValues : defaultValue)

    // If sparseIndices is a vector, then for each i dense[sparseIndices[i]] = sparseValues[i]

    // If sparseIndices is an n by d matrix, then for each i in [0, n) dense[sparseIndices[i][0], ..., sparseIndices[i][d-1]] = sparseValues[i] All other values in dense are set to defaultValue. If sparseValues is a scalar, all sparse indices are set to this single value.

    If indices are repeated the final value is summed over all values for those indices.

    const indices = tf.tensor1d([4, 5, 6, 1, 2, 3], 'int32');
    const values = tf.tensor1d([10, 11, 12, 13, 14, 15], 'float32');
    const shape = [8];
    tf.sparseToDense(indices, values, shape).print();

    Type Parameters

    • R extends Rank

    Parameters

    • sparseIndices: Tensor<Rank> | TensorLike

      A 0-D, 1-D, or 2-D Tensor of type int32. sparseIndices[i] contains the complete index where sparseValues[i] will be placed.

    • sparseValues: Tensor<Rank> | TensorLike

      A 0-D or 1-D Tensor. Values corresponding to each row of sparseIndices, or a scalar value to be used for all sparse indices.

    • outputShape: ShapeMap[R]

      Shape of the dense output tensor. The type is inferred.

    • Optional defaultValue: Scalar | ScalarLike

      Scalar. Value to set for indices not specified in sparseIndices. Defaults to zero.

    Returns Tensor<R>

    Doc

Generated using TypeDoc